Architecting Efficiency: A Comprehensive Analysis of Automated Model Compression Pipelines

The Imperative for Model Compression in Modern Deep Learning The discipline of model compression has transitioned from a niche optimization concern to a critical enabler for the practical deployment of Read More …

A Comprehensive Analysis of Post-Training Quantization Strategies for Large Language Models: GPTQ, AWQ, and GGUF

Executive Summary The proliferation of Large Language Models (LLMs) has been constrained by their immense computational and memory requirements, making efficient inference a critical area of research and development. Post-Training Read More …